0 votes
108 views
in Chapter 2 Inverse Trigonometric Functions by (8.1k points)
edited

cos-1(cos \(\frac { 7π }{ 6 }\)) is equal to
(A) \(\frac { 7π }{ 6 }\)
(B) \(\frac { 5π }{ 6 }\)
(C) \(\frac { π }{ 5 }\)
(D) \(\frac { π }{ 6 }\)

1 Answer

0 votes
by (8.1k points)
selected by
 
Best answer

(B) \(\frac { 5π }{ 6 }\)


cos-1(cos \(\frac { 7π }{ 6 }\)) = cos-1cos ( π + \(\frac { π }{ 6 }\) )
= cos-1(- cos\(\frac { π }{ 6 }\) )
= cos-1[cos ( π – \(\frac { π }{ 6 }\) )
= cos-1cos\(\frac { 5π }{ 6 }\)
= \(\frac { 5π }{ 6 }\).
Note that cos-1(cos \(\frac { 7π }{ 6 }\) ) ≠ \(\frac { 7π }{ 6 }\) since
the range of principal value branch of cos-1 is [0, π].
∴ cos-1(cos \(\frac { 7π }{ 6 }\)) = cos-1cos \(\frac { 5π }{ 6 }\) = \(\frac { 5π }{ 6 }\).

Related questions

Doubtly is an online community for engineering students, offering:

  • Free viva questions PDFs
  • Previous year question papers (PYQs)
  • Academic doubt solutions
  • Expert-guided solutions

Get the pro version for free by logging in!

5.7k questions

5.1k answers

108 comments

554 users

...