(B) \(\frac { π }{ 2 }\)
tan-1\(\sqrt{3}\) = tan-1(tan\(\frac { π }{ 3 }\)) = \(\frac { π }{ 3 }\)
and cot-1\(\sqrt{3}\) = cot-1(-cot\(\frac { π }{ 6 }\) )
= cot-1cot ( π – \(\frac { π }{ 6 }\) )
= cot-1cot\(\frac { 5π }{ 6 }\)
= \(\frac { 5π }{ 6 }\).
since the range of principal value branch of cot-1 is (0, π).
∴ tan-1\(\sqrt{3}\) – cot-1(-\(\sqrt{3}\)) = \(\frac { π }{ 3 }\) – (\(\frac { 5π }{ 6 }\)) = \(\frac { 2π – 5π }{ 6 }\)
= \(\frac { -3π }{ 6 }\) = – \(\frac { π }{ 2 }\)