sin tan-1x, |x| < 1 is equal to (A) \(\frac{x}{\sqrt{1-x^{2}}}\) (B) \(\frac{1}{\sqrt{1-x^{2}}}\) (C) \(\frac{1}{\sqrt{1+x^{2}}}\) (D) \(\frac{x}{\sqrt{1+x^{2}}}\)
Please read the guide .
Please answer the question in detail
Let tan-1x = α ∴ tan α = x. So, sin α = \(\frac{x}{\sqrt{1+x^{2}}}\) or α = sin-1\(\frac{x}{\sqrt{1+x^{2}}}\) Now sin tan-1x = sin α = sin(sin-1\(\frac{x}{\sqrt{1+x^{2}}}\)) = \(\frac{x}{\sqrt{1+x^{2}}}\)
Doubtly is an online community for engineering students, offering:
Get the pro version for free by logging in!
5.7k questions
5.1k answers
108 comments
563 users