Radius of the hemisphere part (r) = 3.5 m = 7/2 m
Volume of hemisphere
\(\begin{array}{*{35}{l}}
=\text{ }2/3\text{ }\pi {{r}^{3}} \\
=\text{ }2/3\text{ x }22/7\text{ x }7/2x\text{ }7/2\text{ x }7/2 \\
=\text{ }539/6\text{ }{{m}^{3}} \\
\end{array}\)
Volume of conical part = 2/3 x 539/6 m3 [2/3 rd of the hemisphere]
Let height of the cone
\(\begin{array}{*{35}{l}}
=\text{ }h \\
1/3\text{ }\pi {{r}^{2~}}h\text{ }=\text{ }\left( 2\text{ x }539 \right)/\text{ }\left( 3\text{ x }6 \right) \\
1/3\text{ x }22/7\text{ x }7/2\text{ x }7/2\text{ x }h\text{ }=\text{ }\left( 2\text{ x }539 \right)/\text{ }\left( 3\text{ x }6 \right) \\
h\text{ }=\text{ }\left( 2\text{ x }539\text{ x }2\text{ x }2\text{ x }7\text{ x }3 \right)/\text{ }\left( 3\text{ x }6\text{ x }22\text{ x }7\text{ x }7 \right) \\
h\text{ }=\text{ }14/3\text{ }m\text{ }=\text{ }4.67\text{ }m \\
\end{array}\)
Height of the cone = 4.67 m
\(\begin{array}{*{35}{l}}
Surface\text{ }area\text{ }of\text{ }buoy\text{ }=\text{ }2\text{ }\pi {{r}^{2}}~+\text{ }\pi rl \\
l\text{ }=\text{ }{{\left( {{r}^{2~}}+\text{ }{{h}^{2}} \right)}^{1/2}} \\
l\text{ }=\text{ }{{\left( {{\left( 7/2 \right)}^{2~}}+\text{ }{{\left( 14/3 \right)}^{2}} \right)}^{1/2}} \\
l\text{ }=\text{ }{{\left( 1225/36 \right)}^{1/2}}~=\text{ }35/6\text{ }m \\
Surface\text{ }area\text{ }=\text{ }2\pi {{r}^{2}}~+\text{ }\pi rl \\
=\text{ }\left( 2\text{ x }22/7\text{ x }7/2\text{ x }7/2 \right)\text{ }+\text{ }\left( 22/7\text{ x }7/2\text{ x }35/6 \right) \\
=\text{ }77\text{ }+\text{ }385/6\text{ }=\text{ }847/6 \\
=\text{ }141.17\text{ }{{m}^{2}} \\
\end{array}\)