Given: Radius (r) = 8 cm, curved surface area of cone = 251.2 cm2
To find: Slant height (l) and the perpendicular height (h) of the cone
i.Curved surface area of cone = πrl
∴ 251.2 = 3.14 x 8 x l
\(l=\frac{251.2}{3.14\times 8}\)
\(=\frac{25120}{314\times 8}\)
\(=\frac{3140}{314}\)
∴ l = 10 cm
ii. Now, l2 = r2 + h2
∴ 102 = 82 + h2
∴ 100 = 64 + h2
∴ 100 – 64 = h2
∴ h2 = 36
∴ h = √36 … [Taking square root on both sides]
= 6 cm
∴ The slant height and the perpendicular height of the cone are 10 cm and 6 cm respectively.