f(x1) = x²1 + 4 and f(x2) = x²2 + 4
So, f(x1) = f(x2) ⇒ x²1 + 4 = x²2 + 4
or x²1 = x²2 ⇒ x1 = x2
As x ∈ R, ∴ x > 0,
x²1 = x²2 ⇒ x1 = x2
⇒ f is one-one.
Let y = x² + 4 or x² = y – 4 or x = ± \(\sqrt{y-4}\).
x being > 0, -vc sign not to be taken.
∴ = \(\sqrt{y-4}\)
∴ f-1(y) = g(y) = \(\sqrt{y-4}\), y ≥ 4.
For every y ≥ 4, g(y) has real positive value.
∴ The inverse of f is f-1(y) = \(\sqrt{y-4}\).