f : R → R given by f(x) = [x].
(a) f(1.2) = 1, f(1.5) = 1
⇒ f is not one-one.
(b) All the images of x ∈ R belonging to its domain have integers as the images in codomain. But no fraction proper or improper belonging to codomain of f has any pre-image in its domain.
⇒ f is not onto.
Hence, f is neither one-one nor onto.