Given : θ1 = 0.20°, nw = 1.33
In the first approximation,
D sin θ1 = y1 and D sin θ2 = y2
sin θ2/sin θ1 = y2/y1 …..(1)
Now, y ∝ λD/d
For given d and D,
y ∝ λ
∴ y2/y1 = λ2/λ1 …..(2)
Now, nw = λ1/λ2 …..(3)
From Eqs. (1), (2) and (3), we get,
sin θ2/sin θ1 = λ2/λ1 = 1/nw
∴ sin θ2 = sin θ1/nw = \(\frac{sin0.2}{1.33}=\frac{0.0035}{1.33}\) = 0.0026
θ2 = sin-10.0026 = 9' = 0.15°
This is the required angular fringe separation