Given : f1 = 100 rpm, f2= 80 rpm, M =10 kg, R = 0.4m, m = 1.6kg
I1=Iwheel = \(\frac{1}{2} MR^2\)= \(\frac{1}{2}(10)(0.4)^2\) = 0.8 kg m2
MI of the wheel and lump of the clay is
I2 = Iwheel + mx2
By the principle of conservation of angular momentum
I1w1 = I2w2
I1(2πf1) = I2(2πf2)
I2 = Iwheel + mx2 =\(\frac{f_1}{f_2}I_1=\frac{f_1}{f_2}I_{wheel}\)
\(∴ mx^2 = (\frac{f1}{f2}−1)I_{wheel}\)
\(∴ mx^2= (\frac{100}{80}−1)(0.8)= 0.2 kg\ m^2\)
∴ x2 = \(\frac{0.2}{1.6}=\frac{ 1}{8}\)
∴ x= \(1\over\sqrt 8\) = 0.3536 m