Given : Crystal structure of iridium = fcc
Molar mass of iridium = 192.2 gmol-1
Density = ρ = 22.4 gcm-3
Radius of iridium = ?
In fcc structure, there are 8 Ir atoms at 8 corners and 6 Ir atoms at 6 face centres.
Total number of Ir atoms = \(\frac{1}{8}×8 +\frac{1}{2}×6 \) = 1+3 = 4
Mass of Ir atom = = 31.92 x 10-23 g
∴ Mass of 4 Ir atoms = 4 x 31.92 x 10-23 g = 1.277 x 10-21 g
Mass of unit cell = 1.277 x 10-21 g
Density of unit cell = \(\frac{\text{mass of unit cell}}{\text{volume of unit cell}}\)
22.4 = \(\frac{1.277×10^{-21}}{a^3}\)
a3 = \(\frac{1.277×10^{-21}}{22.4}\) = 57 x 10-24 cm3
∴ a = \((57×10^{-24})^{\frac{1}{3}}\) = 3.848 x 10-8 cm
If r is the radius of iridium atom, then for fcc structure,
r = \(\frac{a}{2\sqrt{2}}=\frac{3.848×10^{-8}}{2\sqrt{2}}\) = 1.36 x 10-8 cm = 136 pm
Ans: Radius of iridium atom = 136 pm.