Given : T2 = 273 k, Mo1 (oxygen)= 32 ×10-3 kg/mole, Mo2 (hydrogen)= 4 ×10-3 kg/mole
vrms = \(\sqrt{\frac{3RT}{M_o}}\)
The rms speed of oxygen molecule v1 = \(\sqrt{\frac{3RT_1}{M_{o1}}}\)
The rms speed of helium molecule v2 = \(\sqrt{\frac{3RT_2}{M_{o2}}}\)
When v1 = v2
\(\sqrt{\frac{3RT_1}{M_{o1}}}\) = \(\sqrt{\frac{3RT_2}{M_{o2}}}\)
∴ \(\frac{T_1}{M_{o1}}\) = \(\frac{T_2}{M_{o2}}\)
∴ Temprature T1 = \(\frac{M_{o1}}{M_{o2}}.T_2\)
= \(\frac{32×10^{-3}×273}{4×10^{-3}}\) = 2184K
Answer = 2184 K