Given: angle of incident =i=35o
thickness=t=5*10-5cm
refractive index=μ= 1.33
Solution :
\(\mu=\frac{\sin i}{\sin r}\)
\(\sin r=\frac{\sin i}{\mu}\)
\(\sin r=0.43\)
Therefore, r = 25.46
\(\cos r = 0.902\)
Condition for darkness is \(2μ t \cos r = nλ \)
Substitute values of n as 1,2,3,4……… we will get corresponding wavelengths .those wavelengths which fall in the visible spectra will remain absent.
For n=1 \(\lambda_1=2\times0.902\times1.33\times5\times10^{-5}\) = 11.9966 \(\times10^{-5}\) cm =11996.6 Å
For n=2 \(\lambda_2=\frac{2\times0.902\times1.33\times5\times10^{-5}}{2}\) = 5.9983\(\times 10^{-5 }\) cm =5998.3 Å
For n=3 \(\lambda_3=\frac{2\times0.902\times1.33\times5\times10^{-5}} {3}\) =3.998867 \(\times 10^{-5}\) cm =3998.867 Å
Hence , the wavelengths in the reflected light 5998.3 Å is in the visible region of spectrum.