Correct option is (3) (3) F1 is not tautology but F2 is a tautology
F1 : (A ∧~B) ∨[~C ∧ (A ∨ B)] ∨~A
F2 : (A ∨ B) ∨ (B →~A)
F1 : {(A ∧~B) ∨~A} ∨ [(A ∨ B) ∧~C]
: {(A ∨ ~A) ∧ (~A ∨ ~B)} ∨ [(A ∨ B) ∧ ~C]
: {t ∧ (~A ∨ ~B)} ∨ [(A ∨ B) ∧ ~C]
: (~A ∨ ~B) ∨ [(A ∨ B) ∧ ~C]
: \(\underbrace{[(\text ~A∨\text~B∨(A∨B))]}_t\)\([(\text ~A∨\text~B)∧\text~C]\)
F1 : (~A ∨ ~B) ∧ ~ C ≠ t (tautology)
F2 : (A ∨ B) ∨ (~B ∨ ~A) = t (tautology)