0 votes
235 views
in Chapter 5 Magnetism and Matter by (2.2k points)
edited

Show that the magnetic moment of an atom is M = \(\frac { 1 }{ 2 }\)eωr2, where e the charge of an electron, ω – the angular speed of electron and r – the radius of electron orbit.

1 Answer

0 votes
by (2.2k points)
selected by
 
Best answer

The electrons are revolving around the nucleus of an atom. If ‘e’ is the charge of an electron and T its period of revolution, then
Current I = \(\frac { e }{ T }\) = \(\frac { eω }{ 2π }\).
Since T = \(\frac { 2π }{ ω }\), ω is the angular velocity.
If A = πr2, is the area of the orbit of radius ‘r’, then a magnetic moment of the atom,
M = IA = \(\frac { eω }{ 2π }\).πr2 = \(\frac { 1 }{ 2 }\)eωr2.

Related questions

Doubtly is an online community for engineering students, offering:

  • Free viva questions PDFs
  • Previous year question papers (PYQs)
  • Academic doubt solutions
  • Expert-guided solutions

Get the pro version for free by logging in!

5.7k questions

5.1k answers

108 comments

572 users

...