We have:
2P(A) = P(B) = \(\frac{5}{13}\)
⇒ P(A) = \(\frac{5}{26}\), P(B) = \(\frac{5}{13}\).
So, P(A/B) = \(\frac{P(A∩B)}{P(B)}\)
or \(\frac{2}{5}\) = \(\frac{P(A \cap B)}{\frac{5}{13}}\)
⇒ P(A ∩ B) = \(\frac{2}{5}\) × \(\frac{5}{13}\) = \(\frac{2}{13}\).
∴ P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
= \(\frac{5}{26}\) + \(\frac{5}{13}\) – \(\frac{2}{13}\) = \(\frac{5+10-4}{26}\) = \(\frac{11}{26}\)