0 votes
499 views
in Uncategorized by (98.9k points)
edited

A plane which bisects the angle between the two given planes 2x – y + 2z – 4 = 0 and x + 2y + 2z – 2 = 0, passes through the point :0 

  • (1) (1, –4, 1) 
  • (2) (1, 4, –1) 
  • (3) (2, 4, 1) 
  • (4) (2, –4, 1) 

1 Answer

0 votes
by (98.9k points)
selected by
 
Best answer

Correct option is (4) (2, –4, 1)

Explaination::

From question, the equations of planes given are:

2x – y + 2z – 4 = 0

X + 2y + 2z – 2 = 0

The equation of the planes bisecting the angles between two given planes a1x + b1y + c1z + d1 = 0 and a2x + b2y + c2z + d2 = 0 is given as:

a1x+b1y+c1z+d1(a12+b12+c12)=±a2x+b2y+c2z+d2(a22+b22+c22)

Now, for this problem, the equation of the planes bisecting the angles is:

2xy+2z422+(1)2+22=±(x+2y+2z212+22+22)

2xy+2z49=±(x+2y+2z29)

2xy+2z43=±(x+2y+2z23)

⇒ 2x – y + 2z – 4 = ±(x + 2y + 2z – 2)

Case I: take positive sign

⇒ 2x – y + 2z – 4 = x + 2y + 2z - 2

⇒ x – 3y – 2 = 0 ----(1)

Case II: take negative sign

⇒ 2x – y + 2z – 4 = -(x + 2y + 2z - 2)

⇒ 2x – y + 2z – 4 = -x – 2y – 2z + 2

⇒ 3x + y + 4z – 6 = 0 ----(2)

Now, we need to find which point in the given options satisfies the obtained equation.

The point (2, -4, 1) satisfies equation (2)

Related questions

Doubtly is an online community for engineering students, offering:

  • Free viva questions PDFs
  • Previous year question papers (PYQs)
  • Academic doubt solutions
  • Expert-guided solutions

Get the pro version for free by logging in!

5.7k questions

5.1k answers

108 comments

616 users

...