The derivative of log(secθ+tanθ) with respect to secθ at θ= $$\frac{\pi}{4}$$ is:
$$\frac{d}{d\sec\theta}\left[\log(\sec\theta+\tan\theta)\right]_{\theta=\frac{\pi}{4}}=\frac{\tan\theta}{\sec\theta+\tan\theta}\bigg|_{\theta=\frac{\pi}{4}}=\frac{\tan\frac{\pi}{4}}{\sec\frac{\pi}{4}+\tan\frac{\pi}{4}}=\frac{1}{\sqrt{2}+1}=\sqrt{2}-1$$
Therefore, the answer is D) √2.