Video solution::
Text Solution
Let the cost of a chair be ₹ x and that of a table be ₹ y, then
5x + 4y = 5600 ……..(i)
4x + 3y = 4340 ……..(ii)
Multiplying (i) by 3 and (ii) by 4, we get
15x + 12y = 16800……..(iii)
16x + 12y = 17360 ……..(iv)
Subtracting eqn ( iii) from (iv)
15x + 12y = 16800
- 16x + 12y = 17360
-------------------------------------
15x – 16x = 16800 – 17360
-------------------------------------
⇒ -x = -560
⇒ x = 560
Substituting x = 560 in (i), we have
5 × 560 + 4y = 5600
⇒ 4y = 5600 – 2800
⇒ y = \(2800\over4\) = 700
Hence, the cost of a chair and that a table are respectively ₹ 560 and ₹ 700.