Given : I1:I2 = 2:1
If E10 and E20 are the amplitudes of the interfering waves, the ratio of the maximum intensity to the minimum intensity in the fringe system is
\(\frac{I_{max}}{i_{min}}=(\frac{E_{10}+E_{20}}{E_{10}-E_{20}})^2 =(\frac{r+1}{r-1})^2\)
where r = E10/E20.
∴ \(\frac{I_1}{I_2}=(\frac{E_{10}}{E_{20}})^2=r^2\)
∴ r =\(\sqrt{\frac{I_1}{I_2}}\)
∴ \(\frac{I_{max}}{i_{min}}=(\frac{\sqrt{2}+1}{\sqrt{2}-1})^2=(\frac{2.414}{0.414})^2\) = (5.83)2 = 33.99 = 34
The ratio of the intensities of the bright and dark fringes in the resulting interference pattern is 34 : 1.