Mathematical Reasoning JEE MAIN 2021 PYQ
Summary of the post :: According to our study jee main 2021 feb and march mostly Previous year questions are repeated , and In the chapter mathematical reasoning is Tautology is mostly asked
Q1) If P and Q are two statements, then which of the following compound statement is a tautology ?
(1) ((P ⇒ Q) ∧ ~ Q) ⇒ Q
(2) ((P ⇒ Q) ∧ ~ Q) ⇒ ~ P
(3) ((P ⇒ Q) ∧ ~ Q) ⇒ P
(4) ((P ⇒ Q) ∧ ~ Q) ⇒ (P ∧ Q)
Q2) If the Boolean expression
(p∧q)⊙(p⊗q)
" id="MathJax-Element-1-Frame" role="presentation" tabindex="0" style="padding-top: 1px; padding-bottom: 1px; box-sizing: inherit; color: rgb(34, 34, 34); border: 0px; direction: ltr; display: inline-block; float: none; line-height: 0; max-height: none; max-width: none; min-height: 0px; min-width: 0px; overflow-wrap: normal; position: relative; white-space: nowrap;">(p∧q)⊙(p⊗q)(p∧q)⊙(p⊗q) is a tautology, then
⊙
" id="MathJax-Element-2-Frame" role="presentation" tabindex="0" style="padding-top: 1px; padding-bottom: 1px; box-sizing: inherit; color: rgb(34, 34, 34); border: 0px; direction: ltr; display: inline-block; float: none; line-height: 0; max-height: none; max-width: none; min-height: 0px; min-width: 0px; overflow-wrap: normal; position: relative; white-space: nowrap;">⊙⊙ and
⊗
" id="MathJax-Element-3-Frame" role="presentation" tabindex="0" style="padding-top: 1px; padding-bottom: 1px; box-sizing: inherit; color: rgb(34, 34, 34); border: 0px; direction: ltr; display: inline-block; float: none; line-height: 0; max-height: none; max-width: none; min-height: 0px; min-width: 0px; overflow-wrap: normal; position: relative; white-space: nowrap;">⊗⊗ are respectively given by :
(1) →, →
(2) ∧, ∨
(3) ∨, →
(4) ∧, →
Q3) If the Boolean expression \((p \Rightarrow q)\Leftrightarrow (q\, *(\sim p))\) is a tautology, then the Boolean expression \(p\, *(\sim q)\) is equivalent to :
(1) \(q \Rightarrow p\)
(2) \(\sim q \Rightarrow p\)
(3) \(p \Rightarrow \sim q\)
(4) \(p \Rightarrow q\)
Q4)Which of the following Boolean expression is a tautology?
(1) (p ∧ q) \(\vee\) (p \(\vee\) q)
(2) (p ∧ q) \(\vee\) (p → q)
(3) (p ∧ q) ∧ (p → q)
(4) (p ∧ q) → (p → q)
Q5)Let F1(A,B,C) = (A∧~B) ∨ [~C ∧ (A ∨ B)] ∨~A and F2(A, B) = (A ∨ B) ∨ (B →~A) be two logical expressions. Then :
(1) F1 and F2 both are tautologies
(2) F1 is a tautology but F2 is not a tautology
(3) F1 is not tautology but F2 is a tautology
(4) Both F1 and F2 are not tautology
Q6) The contrapositive of the statement "If you will work, you will earn money" is :
(1) You will earn money, if you will not work
(2) If you will earn money, you will work
(3) If you will not earn money, you will not work
(4) To earn money, you need to work
Q7) The statement A → (B → A) is equivalent to :
(1) A → (A ∧ B)
(2) A →(A → B)
(3) A → (A \(\leftrightarrow\)B)
(4) A → (A V B)
Q8) The negation of the statement ∼p∧(p∨q) is :
A ) p∨∼qB) ∼p∨qC) ∼ p ∧ q D) p ∧ ∼ q
Q9) The statement among the following that is a tautology is :
(1) A ∧ (A ∧ B)
(2) A ∧(A ∧ B)
(3) B → [A ∧(A → B)]
(4) [A ∧ (A → B)] → B