0 votes
97 views
in 2022 by (98.9k points)
edited
\( x\left(x^{2}+1\right)^{-1 / 2} \) find dy/dx using chain rule

1 Answer

0 votes
by (98.9k points)
selected by
 
Best answer
\(\frac d{dx} x(x^2 + 1)^{\frac{-1}2} = x\frac d{dx} (x^2 + 1)^{\frac{-1}2} + \frac{dx}{dx} \times (x^2 + 1)^{\frac{-1}2}\)

\( = x\times \frac{-1}2 (x^2 + 1)^{\frac{-1}2-1} \frac{d}{dx} (x^2 + 1) + (x^2 + 1)^{\frac{-1}2}\)

\(= -\frac x2 (x^2 + 1)^{\frac{-3}2}.2x + (x^2 + 1)^\frac{-1}2\)

\( = (x^2 + 1)^\frac{-1}2 \left(\frac{-x^2}{x^2 + 1}+ 1\right)\)

\( = (x^2 + 1)^\frac{-1}2 \left(\frac1{x^2 + 1}\right)\)

\( = \frac1{(x^2 + 1)^\frac32}\)

Related questions

0 votes
1 answer 188 views

Doubtly is an online community for engineering students, offering:

  • Free viva questions PDFs
  • Previous year question papers (PYQs)
  • Academic doubt solutions
  • Expert-guided solutions

Get the pro version for free by logging in!

5.7k questions

5.1k answers

108 comments

557 users

...