Given : Tf = 2Ti, monatomic gas ϒ = 5/3
PiViϒ = PfVfϒ in an adiabatic process
Now, PV= nRT ∴ V = nRT/P
∴ Vi = \(\frac{nRT_i}{P_i}\) and Vf = \(\frac{nRT_f}{P_f}\)
∴ \(P_i(\frac{nRT_i}{P_i})^\gamma = P_f(\frac{nRT_f}{P_f})^\gamma\)
∴ Pi1−ϒTiϒ = Pf1−ϒTfϒ
∴ \((\frac{T_f}{T_i})^{\gamma}\) = \((\frac{P_i}{P_f})^{1-\gamma}\)
∴ \((\frac{T_f}{T_i})^{\gamma}\) = \((\frac{P_f}{P_i})^{\gamma -1}\)
∴ \(2^\frac{5}{3} = (\frac{P_f}{P_i})^{\frac{5}{3}-1} = (\frac{P_f}{P_i})^{\frac{2}{3}}\)
∴ \(\frac{5}{3}log\,2=\frac{2}{3}log(\frac{P_f}{p_i})\)
∴ \(\frac{5}{3}0.3010=\frac{2}{3}log(\frac{P_f}{p_i})\)
∴ \((2.5)(0.3010)=log(\frac{P_f}{p_i})\)
∴ 0.7525 = \(log(\frac{P_f}{p_i})\)
= \((\frac{P_f}{p_i})\) = antilog (0.7525) = 5.656
This is ratio of final pressure to its initial pressure