0 votes
193 views
in Physics by (98.9k points)
reopened by

For what value of displacement the kinetic energy and potential of a simple harmonic oscillation become equal ?

(1) x = 0 
(2) \(x=\pm A\) 
(3) \(x={ \pm{A\over\sqrt2}}\) 
(4)\(x={A\over2}\)

1 Answer

0 votes
by (98.9k points)
selected by
 
Best answer

The correct option is (3) \(x={ \pm{A\over\sqrt2}}\) 

Explaination::

potential energy =\({1\over2}kx^2={1\over2}m\omega^2( x^2)\) 

Kinetic energy =\({1\over2}m(\omega\sqrt{ A^2-x^2})^2\) 

As , 

potential energy = kinetic energy 

\({1\over2}m\omega^2( x^2)={1\over2}m(\omega\sqrt{A^2-x^2})^2\)

\({1\over2}m\omega^2( x^2)={1\over2}m\omega^2( A^2)-{1\over2}m\omega^2( x^2)\)

\(m\omega^2( x^2)={1\over2}m\omega^2A^2\)

\(x^2={1\over2}A^2\)

\( x=\pm{A\over\sqrt2}\)

Related questions

Doubtly is an online community for engineering students, offering:

  • Free viva questions PDFs
  • Previous year question papers (PYQs)
  • Academic doubt solutions
  • Expert-guided solutions

Get the pro version for free by logging in!

5.7k questions

5.1k answers

108 comments

572 users

...