The correct option is A)\(\space\sqrt{ (1+2\sqrt2)G\space \over2}\)
explaination::
By resolving force F2, we get
F1 + F2 cos 45° + F2 cos 45° = Fc
F1 + 2F2 cos 45° = Fc
Fc = centripetal force = MV2 / R
\({ GM^2\over(2R)^2}={ {2GM^2 \over(2R)^2} \cos 45^o}={ MV^2\over R}\)
\({ GM^2\over 4R^2}+{ 2GM^2\over2\sqrt2R^2}={ MV^2\over R}\)
\({GM^2\over 4R^2}+{GM\over\sqrt {2R}}=V^2\)
\(V ={\sqrt{{ GM\over 4R}+{GM\over\sqrt{2R}}}}\)
\(V={1\over2}{ \sqrt{{ GM\over R} [ {1+2\sqrt2}]}}\)
now, mass=1kg and radius=1m
\(⇒ V={1\over2}{\sqrt{ G(1+2\sqrt2)}}\)