B) option is correct answer
Detailed solution:
Moment of inertia of the rod about an axis passing through its centre and perpendicular to the length \(I_1={1\over12}ML^2\)
using \(Mk_1^2=I_1={1\over12}ML^2\)
we get radius of gyration \(K_1={L\over\sqrt{12}}\)
Moment of inertia of the rod about an axis passing through its one end and perpendicular to the length \(I_2={1\over3}ML^2\)
Using \(Mk_2^2=I_2={1\over3}ML^2\)
we get radius of gyration \(K_2={L\over\sqrt3}\)
Thus , the radius of gyaration \({k_1\over k_2}={L/\sqrt{12} \over L/\sqrt3}\)
⟹ \({k_1\over k_2}={1\over 2}\)