Programs to demonstrate Dataset Operations using Matplotlib

Programs to demonstrate Dataset Operations using Matplotlib , Matplotlib is a Python 2D plotting library that produces high-quality charts and figures, which helps us visualize extensive data to understand better. Pandas is a handy and useful data-structure tool for analyzing large and complex data.

Exercise 1: Read Total profit of all months and show it using a line plot

#df = pd.read_excel(r'Path where the Excel file is stored\File name.xlsx')
#print(df)
import pandas as pd
import matplotlib.pyplot as plt  
df = pd.read_csv("company_sales_data.csv")
df
month_numberfacecreamfacewashtoothpastebathingsoapshampoomoisturizertotal_unitstotal_profit
0125001500520092001200150021100211000
1226301200510061002100120018330183300
2321401340455095503550134022470224700
3434001130587088701870113022270222700
4536001740456077601560174020960209600
5627601555489074901890155520140201400
6729801120478089801780112029550295500
7837001400586099602860140036140361400
8935401780610081002100178023400234000
910199018908300103002300189026670266700
1011234021007300133002400210041280412800
1112290017607400144001800176030020300200
profitList = df ['total_profit'].tolist()
monthList  = df ['month_number'].tolist()
profitList
[211000,
 183300,
 224700,
 222700,
 209600,
 201400,
 295500,
 361400,
 234000,
 266700,
 412800,
 300200]
monthList
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

plt.plot(monthList, profitList, label = 'Month-wise Profit data of last year')
plt.xlabel('Month number')
plt.ylabel('Profit in dollar')
plt.xticks(monthList)
plt.title('Company profit per month')
plt.yticks([100000, 200000, 300000, 400000, 500000])
plt.show()

Exercise 2: Get total profit of all months and show line plot with the following Style properties

Generated line plot must include following Style properties: –

Line Style dotted and Line-color should be red

Show legend at the lower right location.

X label name = Month Number

Y label name = Sold units number

Add a circle marker.

Line marker color as read

Line width should be 3


plt.plot(monthList, profitList, label = 'Profit data of last year', 
      color='r', marker='o', markerfacecolor='k', 
      linestyle='--', linewidth=3)
      
plt.xlabel('Month Number')
plt.ylabel('Profit in dollar')
plt.legend(loc='lower right')
plt.title('Company Sales data of last year')
plt.xticks(monthList)
plt.yticks([100000, 200000, 300000, 400000, 500000])
plt.show()
plt.plot(monthList, profitList, label = 'Profit data of last year')
      
plt.xlabel('Month Number')
plt.ylabel('Profit in dollar')
plt.legend(loc='lower right')
plt.title('Company Sales data of last year')
plt.xticks(monthList)
plt.yticks([100000, 200000, 300000, 400000, 500000])
plt.show()

Exercise 3: Read all product sales data and show it using a multiline plot

Display the number of units sold per month for each product using multiline plots. (i.e., Separate Plotline for each product ).

monthList  = df ['month_number'].tolist()
faceCremSalesData   = df ['facecream'].tolist()
faceWashSalesData   = df ['facewash'].tolist()
toothPasteSalesData = df ['toothpaste'].tolist()
bathingsoapSalesData   = df ['bathingsoap'].tolist()
shampooSalesData   = df ['shampoo'].tolist()
moisturizerSalesData = df ['moisturizer'].tolist()

plt.plot(monthList, faceCremSalesData,   label = 'Face cream Sales Data', marker='o', linewidth=3)
plt.plot(monthList, faceWashSalesData,   label = 'Face Wash Sales Data',  marker='o', linewidth=3)
plt.plot(monthList, toothPasteSalesData, label = 'ToothPaste Sales Data', marker='o', linewidth=3)
plt.plot(monthList, bathingsoapSalesData, label = 'ToothPaste Sales Data', marker='o', linewidth=3)
plt.plot(monthList, shampooSalesData, label = 'ToothPaste Sales Data', marker='o', linewidth=3)
plt.plot(monthList, moisturizerSalesData, label = 'ToothPaste Sales Data', marker='o', linewidth=3)

plt.xlabel('Month Number')
plt.ylabel('Sales units in number')
plt.legend(loc='upper left')
plt.xticks(monthList)
plt.yticks([1000, 2000, 4000, 6000, 8000, 10000, 12000, 15000, 18000])
plt.title('Sales data')
plt.show()

Exercise 4: Read toothpaste sales data of each month and show it using a scatter plot

monthList  = df ['month_number'].tolist()
toothPasteSalesData = df ['toothpaste'].tolist()
plt.scatter(monthList, toothPasteSalesData, label = 'Tooth paste Sales data')
plt.xlabel('Month Number')
plt.ylabel('Number of units Sold')
plt.legend(loc='upper left')
plt.title(' Tooth paste Sales data')
plt.xticks(monthList)
plt.grid(True, linewidth= 1, linestyle="--")
plt.show()

Exercise 5: Read face cream and facewash product sales data and show it using the bar chart

monthList  = df ['month_number'].tolist()
faceCremSalesData   = df ['facecream'].tolist()
faceWashSalesData   = df ['facewash'].tolist()

plt.bar([a-0.25 for a in monthList], faceCremSalesData, width= 0.25, label = 'Face Cream sales data', align='edge')
plt.bar([a+0.25 for a in monthList], faceWashSalesData, width= -0.25, label = 'Face Wash sales data', align='edge')
plt.xlabel('Month Number')
plt.ylabel('Sales units in number')
plt.legend(loc='upper left')
plt.title(' Sales data')

plt.xticks(monthList)
plt.grid(True, linewidth= 1, linestyle="--")
plt.title('Facewash and facecream sales data')
plt.show()

Exercise 6: Read sales data of bathing soap of all months and show it using a bar chart. Save this plot to your hard disk

import pandas as pd
import matplotlib.pyplot as plt  

df = pd.read_csv("company_sales_data.csv")
monthList  = df ['month_number'].tolist()
bathingsoapSalesData   = df ['bathingsoap'].tolist()
plt.bar(monthList, bathingsoapSalesData)
plt.xlabel('Month Number')
plt.ylabel('Sales units in number')
plt.title(' Sales data')
plt.xticks(monthList)
plt.grid(True, linewidth= 1, linestyle="--")
plt.title('bathingsoap sales data')
plt.savefig('sales_data_of_bathingsoap.png', dpi=150)
plt.show()

Exercise 8: Calculate total sale data for last year for each product and show it using a Pie chart

In Pie chart display Number of units sold per year for each product in percentage.

monthList  = df ['month_number'].tolist()

labels = ['FaceCream', 'FaseWash', 'ToothPaste', 'Bathing soap', 'Shampoo', 'Moisturizer']
salesData   = [df ['facecream'].sum(), df ['facewash'].sum(), df ['toothpaste'].sum(), 
         df ['bathingsoap'].sum(), df ['shampoo'].sum(), df ['moisturizer'].sum()]
plt.axis("equal")
plt.pie(salesData, labels=labels, autopct='%1.1f%%')
plt.legend(loc='lower right')
plt.title('Sales data')
plt.show()

Exercise 9: Read Bathing soap facewash of all months and display it using the Subplot

monthList  = df ['month_number'].tolist()
bathingsoap   = df ['bathingsoap'].tolist()
faceWashSalesData   = df ['facewash'].tolist()

f, axarr = plt.subplots(2, sharex=True)
axarr[0].plot(monthList, bathingsoap, label = 'Bathingsoap Sales Data', color='k', marker='o', linewidth=3)
axarr[0].set_title('Sales data of  a Bathingsoap')
axarr[1].plot(monthList, faceWashSalesData, label = 'Face Wash Sales Data', color='r', marker='o', linewidth=3)
axarr[1].set_title('Sales data of  a facewash')

plt.xticks(monthList)
plt.xlabel('Month Number')
plt.ylabel('Sales units in number')
plt.show()

Exercise Question 10: Read all product sales data and show it using the stack plot

monthList  = df ['month_number'].tolist()

faceCremSalesData   = df ['facecream'].tolist()
faceWashSalesData   = df ['facewash'].tolist()
toothPasteSalesData = df ['toothpaste'].tolist()
bathingsoapSalesData   = df ['bathingsoap'].tolist()
shampooSalesData   = df ['shampoo'].tolist()
moisturizerSalesData = df ['moisturizer'].tolist()

plt.plot([],[],color='m', label='face Cream', linewidth=5)
plt.plot([],[],color='c', label='Face wash', linewidth=5)
plt.plot([],[],color='r', label='Tooth paste', linewidth=5)
plt.plot([],[],color='k', label='Bathing soap', linewidth=5)
plt.plot([],[],color='g', label='Shampoo', linewidth=5)
plt.plot([],[],color='y', label='Moisturizer', linewidth=5)

plt.stackplot(monthList, faceCremSalesData, faceWashSalesData, toothPasteSalesData, 
              bathingsoapSalesData, shampooSalesData, moisturizerSalesData, 
              colors=['m','c','r','k','g','y'])

plt.xlabel('Month Number')
plt.ylabel('Sales unints in Number')
plt.title('Alll product sales data using stack plot')
plt.legend(loc='upper left')
plt.show()

jsDelivr CDN plugin by Nextgenthemes

These are the assets loaded from jsDelivr CDN. Do not worry about old WP versions in the URLs, this is simply because the files were not modified. A sha384 hash check is used so you can be 100% sure the files loaded from jsDelivr are the exact same files that would be served from your server.


	

Level up your video embeds with ARVE or ARVE Pro