Program to demonstrate Data series and Data Frames using pandas.

Program to demonstrate Data series and Data Frames using pandas.

1.Write a Pandas program to add, subtract, multiple and divide two Pandas Series.

import pandas as pd

s1 = pd.Series([10, 20, 30, 40, 50])
s2 = pd.Series([5, 10, 15, 20, 25])

# Add s1 and s2
s3 = s1 + s2
print("Addition of two Series:")
print(s3)

# Subtract s2 from s1
s4 = s1 - s2
print("\nSubtraction of two Series:")
print(s4)

# Multiply s1 and s2
s5 = s1 * s2
print("\nMultiplication of two Series:")
print(s5)

# Divide s1 by s2
s6 = s1 / s2
print("\nDivision of two Series:")
print(s6)

2.Write a Pandas program to convert Series of lists to one Series.

import pandas as pd

s1 = pd.Series([[1, 2, 3], [4, 5], [6, 7, 8, 9], [10]])

s2 = pd.Series([val for sublist in s1 for val in sublist])
print(s2)

3.Write a Pandas program to select the rows where the number of attempts in the examination is greater than 2.

: exam_data = {‘name’: [‘Anastasia’, ‘Dima’, ‘Katherine’, ‘James’, ‘Emily’, ‘Michael’, ‘Matthew’, ‘Laura’, ‘Kevin’, ‘Jonas’], ‘score’: [12.5, 9, 16.5, np.nan, 9, 20, 14.5, np.nan, 8, 19], ‘attempts’: [1, 3, 2, 3, 2, 3, 1, 1, 2, 1], ‘qualify’: [‘yes’, ‘no’, ‘yes’, ‘no’, ‘no’, ‘yes’, ‘yes’, ‘no’, ‘no’, ‘yes’]} labels = [‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’, ‘i’, ‘j’]

import numpy as np
import pandas as pd

exam_data = {
    'name': ['Anastasia', 'Dima', 'Katherine', 'James', 'Emily', 'Michael', 'Matthew', 'Laura', 'Kevin', 'Jonas'],
    'score': [12.5, 9, 16.5, np.nan, 9, 20, 14.5, np.nan, 8, 19],
    'attempts': [1, 3, 2, 3, 2, 3, 1, 1, 2, 1],
    'qualify': ['yes', 'no', 'yes', 'no', 'no', 'yes', 'yes', 'no', 'no', 'yes']
}
labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']

df = pd.DataFrame(exam_data, index=labels)

result = df[df['attempts'] > 2]
print(result)

4.Write a Pandas program to sort the data frame first by ‘name’ in descending order, then by ‘score’ in ascending order.

: exam_data = {‘name’: [‘Anastasia’, ‘Dima’, ‘Katherine’, ‘James’, ‘Emily’, ‘Michael’, ‘Matthew’, ‘Laura’, ‘Kevin’, ‘Jonas’], ‘score’: [12.5, 9, 16.5, np.nan, 9, 20, 14.5, np.nan, 8, 19], ‘attempts’: [1, 3, 2, 3, 2, 3, 1, 1, 2, 1], ‘qualify’: [‘yes’, ‘no’, ‘yes’, ‘no’, ‘no’, ‘yes’, ‘yes’, ‘no’, ‘no’, ‘yes’]} labels = [‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’, ‘i’, ‘j’] Values for each column will be: name : ‘Suresh’, score: 15.5, attempts: 1, qualify: ‘yes’, label: ‘k’

import pandas as pd
import numpy as np

# create the initial DataFrame
exam_data = {
    'name': ['Anastasia', 'Dima', 'Katherine', 'James', 'Emily', 'Michael', 'Matthew', 'Laura', 'Kevin', 'Jonas'],
    'score': [12.5, 9, 16.5, np.nan, 9, 20, 14.5, np.nan, 8, 19],
    'attempts': [1, 3, 2, 3, 2, 3, 1, 1, 2, 1],
    'qualify': ['yes', 'no', 'yes', 'no', 'no', 'yes', 'yes', 'no', 'no', 'yes']
}

# create the DataFrame
df = pd.DataFrame(exam_data, index=['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'])

# add a new row to the DataFrame
new_row = pd.Series(data={'name': 'Suresh', 'score': 15.5, 'attempts': 1, 'qualify': 'yes'}, name='k')
df = df.append(new_row)

# sort the DataFrame by 'name' in descending order, then by 'score' in ascending order
df = df.sort_values(by=['name', 'score'], ascending=[False, True])

print(df)

jsDelivr CDN plugin by Nextgenthemes

These are the assets loaded from jsDelivr CDN. Do not worry about old WP versions in the URLs, this is simply because the files were not modified. A sha384 hash check is used so you can be 100% sure the files loaded from jsDelivr are the exact same files that would be served from your server.


	

Level up your video embeds with ARVE or ARVE Pro