Day 14: Matplotlib for Data Visualization

Topics to Cover:

  • Introduction to Matplotlib
  • Basic Plotting

Introduction to Matplotlib

Matplotlib is a popular plotting library for Python. It provides an object-oriented API for embedding plots into applications.

Installing Matplotlib:
If you don’t have Matplotlib installed, you can install it using pip:

pip install matplotlib

Basic Plotting with Matplotlib

Matplotlib allows you to create various types of plots, such as line plots and scatter plots.

Creating a Simple Line Plot:

import matplotlib.pyplot as plt

# Sample data
x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]

# Creating a line plot
plt.plot(x, y)
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Simple Line Plot')
plt.show()

Creating a Simple Scatter Plot:

import matplotlib.pyplot as plt

# Sample data
x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]

# Creating a scatter plot
plt.scatter(x, y)
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Simple Scatter Plot')
plt.show()

Visualizing Data from a Pandas DataFrame

Matplotlib works seamlessly with Pandas DataFrames, making it easy to visualize data directly from a DataFrame.

Example: Visualizing Data from a DataFrame:

import pandas as pd
import matplotlib.pyplot as plt

# Sample data
data = {
    'Year': [2010, 2011, 2012, 2013, 2014],
    'Sales': [100, 120, 140, 160, 180]
}

df = pd.DataFrame(data)

# Creating a line plot from DataFrame
plt.plot(df['Year'], df['Sales'])
plt.xlabel('Year')
plt.ylabel('Sales')
plt.title('Yearly Sales')
plt.show()

Potential Problems to Solve

Problem 1: Create a Line Plot and Scatter Plot

Task: Create a line plot and scatter plot using Matplotlib.

Solution:

import matplotlib.pyplot as plt

# Line plot
x = [0, 1, 2, 3, 4, 5]
y = [0, 1, 4, 9, 16, 25]

plt.plot(x, y)
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Line Plot of y = x^2')
plt.show()

# Scatter plot
plt.scatter(x, y)
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Scatter Plot of y = x^2')
plt.show()

Problem 2: Visualize Data from a Pandas DataFrame

Task: Visualize data from a Pandas DataFrame.

Solution:

import pandas as pd
import matplotlib.pyplot as plt

# Sample data
data = {
    'Month': ['Jan', 'Feb', 'Mar', 'Apr', 'May'],
    'Revenue': [200, 220, 250, 270, 300]
}

df = pd.DataFrame(data)

# Creating a bar plot from DataFrame
plt.bar(df['Month'], df['Revenue'])
plt.xlabel('Month')
plt.ylabel('Revenue')
plt.title('Monthly Revenue')
plt.show()

Conclusion

Matplotlib is a versatile tool for creating a wide range of plots and visualizations in Python. By mastering the basics, you can effectively visualize and communicate data insights.


Stay tuned for Day 15 of the python4ai 30-day series, where we will continue exploring advanced Python topics to enhance our programming skills!

Team
Team

This account on Doubtly.in is managed by the core team of Doubtly.

Articles: 483

jsDelivr CDN plugin by Nextgenthemes

These are the assets loaded from jsDelivr CDN. Do not worry about old WP versions in the URLs, this is simply because the files were not modified. A sha384 hash check is used so you can be 100% sure the files loaded from jsDelivr are the exact same files that would be served from your server.


	

Level up your video embeds with ARVE or ARVE Pro