1. Neural Network ki Fundamentals
1.1 Deep Learning ka Introduction
History
- 1950s mein artificial neurons ka concept aaya
- 1980s mein backpropagation ka discovery hua
- 2012 mein ImageNet competition ne Deep Learning ko famous kiya
- Ab ye AI ki sabse powerful technology hai
Success Stories
- Face Recognition: Phone unlock karne se lekar airport security tak
- Self-driving Cars: Tesla, Waymo jaise companies
- Language Translation: Google Translate
- Voice Assistants: Alexa, Siri
- Medical Diagnosis: Cancer detection, X-ray analysis
Multilayer Perceptrons (MLPs)
- Simple samjhe toh ye hai artificial neurons ka network
- Input Layer → Hidden Layers → Output Layer
- Har layer multiple neurons se bana hota hai
- Har neuron previous layer ke sabhi neurons se connected hota hai
Neuron kaise kaam karta hai:
- Input values leta hai
- Har input ko weight se multiply karta hai
- Sab values ko add karta hai
- Ek bias value add karta hai
- Is final value pe activation function apply karta hai
Sigmoid Neurons
- Sigmoid function: f(x) = 1/(1 + e^(-x))
- 0 se 1 ke beech mein value deta hai
- Smooth curve banata hai
- Gradient calculate karne mein helpful
Gradient Descent
- Network ko train karne ka fundamental method
- Loss function ko minimize karne ki koshish karta hai
- Step by step process:
- Random weights se start karo
- Loss calculate karo
- Gradient (direction) calculate karo
- Weights ko update karo
- Repeat until satisfied
1.2 Deep Networks ki Classes
Three Main Types:
- Feedforward Networks
- Simplest type
- Information sirf forward direction mein jaati hai
- Image classification ke liye perfect
- Convolutional Networks
- Images ke liye specialized
- Patterns detect karne mein expert
- Face recognition, object detection mein use hote hain
- Recurrent Networks
- Sequential data ke liye best
- Text, speech, time series data ke liye
- Memory rakh sakte hain previous inputs ki
2. Training, Optimization aur Regularization
2.1 Neural Network ki Training
Activation Functions
- ReLU (Rectified Linear Unit)
- Most popular
- f(x) = max(0,x)
- Fast computation
- Vanishing gradient problem solve karta hai
- Sigmoid
- 0 se 1 ke beech output
- Probability ke liye perfect
- But vanishing gradient problem ho sakta hai
- Tanh
- -1 se +1 ke beech output
- Sigmoid se better performance
- Center mein symmetric
- Leaky ReLU
- ReLU ka improved version
- Negative values ke liye small slope
- Dead neurons problem solve karta hai
Loss Functions
- Mean Squared Error (MSE)
- Regression problems ke liye
- (predicted – actual)² ka average
- Simple aur effective
- Cross Entropy
- Classification ke liye best
- Probability distribution compare karta hai
- Binary aur multi-class problems ke liye
2.2 Optimization Techniques
Gradient Descent Types
- Batch Gradient Descent
- Pura dataset ek saath use karta hai
- Accurate but slow
- Memory intensive
- Stochastic Gradient Descent (SGD)
- Ek sample at a time
- Fast but noisy
- Less memory requirement
- Mini-batch Gradient Descent
- Best of both worlds
- Small batches mein data process karta hai
- Most commonly used
Advanced Optimizers
- Adam
- Most popular
- Adaptive learning rates
- Momentum + RMSprop ka combination
- Usually best performance deta hai
- RMSprop
- Learning rate ko adapt karta hai
- Oscillations kam karta hai
- Adam se pehle popular tha
2.3 Regularization Methods
Overfitting Prevention
- Dropout
- Random neurons ko temporarily disable karta hai
- Network ko robust banata hai
- Training time pe hi use hota hai
- Batch Normalization
- Layer inputs ko normalize karta hai
- Training speed improve karta hai
- Gradient flow better karta hai
- L1/L2 Regularization
- Weights ko control karta hai
- Complex models ko simple banata hai
- Overfitting reduce karta hai
- Data Augmentation
- Training data ko artificially increase karta hai
- Images rotate, flip, zoom karke
- Model ko robust banata hai
3. Autoencoders
3.1 Basic Concepts
- Input ko compress karke fir reconstruct karte hain
- Dimensionality reduction ke liye useful
- Unsupervised learning ka example
Types of Autoencoders
- Undercomplete Autoencoder
- Hidden layer chota hota hai
- Compression seekhta hai
- Important features extract karta hai
- Denoising Autoencoder
- Noisy input se clean output banata hai
- Robust features seekhta hai
- Image restoration mein useful
- Sparse Autoencoder
- Hidden layer bada hota hai
- But mostly neurons inactive rehte hain
- Efficient representation seekhta hai
3.2 Applications
- Image compression
- Feature learning
- Anomaly detection
- Data denoising
- Dimensionality reduction
4. Convolutional Neural Networks (CNN)
4.1 Basic Operations
Convolution Operation
- Filter/kernel input pe slide karta hai
- Features detect karta hai
- Different filters different patterns detect karte hain
Important Terms
- Stride
- Filter kitna move karega
- Larger stride = smaller output
- Padding
- Input ke around zeros add karna
- Output size maintain karne ke liye
- Pooling
- Output size reduce karta hai
- Max pooling most common hai
- Features preserve karta hai
4.2 Famous Architectures
1. LeNet
- First successful CNN
- Handwritten digits ke liye bana
- Simple but effective architecture
2. AlexNet
- 2012 mein ImageNet winner
- Deep Learning revolution start kiya
- Multiple GPU support
3. ResNet
- Very deep networks possible banaya
- Skip connections introduce kiya
- State-of-the-art performance
5. Recurrent Neural Networks (RNN)
5.1 Fundamentals
- Sequential data ke liye perfect
- Previous inputs yaad rakh sakta hai
- Time series prediction mein best
Problems with Simple RNN
- Vanishing gradient
- Long-term dependencies handle nahi kar paata
- Training difficult hoti hai
5.2 Advanced RNN Types
LSTM (Long Short-Term Memory)
- Most popular RNN variant
- Long-term dependencies handle kar sakta hai
- Three gates:
- Forget gate
- Input gate
- Output gate
GRU (Gated Recurrent Unit)
- LSTM ka simpler version
- Less parameters
- Often similar performance to LSTM
5.3 Applications
- Machine translation
- Speech recognition
- Text generation
- Time series prediction
6. Latest Trends
6.1 Generative Adversarial Networks (GAN)
Basic Concept
- Two networks compete with each other:
- Generator: Fake data banata hai
- Discriminator: Real vs Fake identify karta hai
Applications
- Realistic images generate karna
- Image style transfer
- Data augmentation
- DeepFake videos
6.2 DeepFake Technology
- Face replacement in videos
- Voice cloning
- Synthetic media generation
- Ethical concerns important hain
Practice Tips
- Google Colab use karein – free GPU milta hai
- Small datasets se start karein
- Simple architectures se shuruat karein
- Regular practice zaruri hai
- GitHub pe code share karein
- Online communities join karein